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1. Introduction 
Electromagnetic (EM) launchers such as rail guns (see fig. 1) are relatively 
new devices for generating hypervelocity projectiles. As indicated in fig- 
ure 1, the projectile is accelerated between the rails by the I x B force until 
it exits at the muzzle. The magnetic induction, B, is created by the current 
in the rails, and I is the loop current flowing through the rails and arma- 
ture. Although the acceleration issues concerning these devices have been 
studied for some time, the electromagnetic compatibility (EMC) issues re- 
lated to their integration into a system have only recently been examined 
[1]. This report addresses the salient features of the EM environment under 
live-fire conditions, discusses the instrumentation and techniques used to 
measure the electric (E-) and magnetic (H-) fields, describes the representa- 
tion and modeling of this inherently nonlinear device as a circuit element, 
and compares theoretical predictions of the fields with selected experi- 
mental results. The emphasis of this report is to provide an overview of the 
EMC issues that are relevant to these high-power electromagnetic (HPEM) 
devices. The two-rail gun in figure 1 has dimensions / = 1 m, w = 15 mm, 
h = 19 mm, and d = 10 mm, is contained by a laminated steel barrel, and is 
powered by a capacitor bank to produce peak rail currents up to 160 kA. In 
our experiments, projectile acceleration was not an issue, so nine firings of 
a solid armature were used as a test bed for EM field measurements. Previ- 
ous reports [2-6] provide detailed information on all aspects of the experi- 
ments. A typical H-field measured near a two-turn, series-augmented rail 
gun 1 m long with a laminated steel barrel is also shown for comparison. 
Extending the theoretical model to include variations in the rail gun design 
is currently under investigation. 

Figure 1. Rail gun and 
coordinate system. 



2. Pulse Power System and Rail Current 
In the absence of friction or other losses, the equation of motion of the 
armature is 

Figure 2. Rail-gun 
electrical model. 

dt2     2 
(1) 

where m is the combined armature-plus-projectile mass, zA(t) is the posi- 
tion of the armature, and L'e is a theoretically derived "effective" induc- 
tance gradient that takes into account the transmission-line inductance per 
unit length of the rails and the efficiency of magnetic field force coupling 
to the armature [2,3]. When equation (1) is combined with the rail-gun 
driving circuit of figure 2 and the transmission-line model for the rails 
[2-4], a system of nonlinear time-dependent equations is developed whose 
solution provides the transient current and associated EM fields. 

The rails are connected to the four capacitor banks shown in figure 2. Al- 
though not indicated, diodes are placed across the capacitors to prevent 
reverse current. The load resistor, RL = 100 fl, is sufficiently large to allow 
a measure of the muzzle voltage. Since the main function of this initial 
phase of the program was to characterize the rail-gun EM environment, it 
was sufficient to simply measure the rail current in order to verify our 
theoretical model for the rail-gun inductance [7,8], the efficiency of 
coupling to the armature [2-4], and the computation of the fields from the 
current [1-6]. The measured rail current is well approximated by the 
expression 

7(f) = 190(e-
500f-e-13'000f)kA (2) 

This current has a peak amplitude of 160 kA with a risetime of about 
300 us. It is this expression that is used in equation (1) to compute the ar- 
mature velocity and acceleration. 

The electrical model of a rail gun with augmenting turns is modified to in- 
clude the series inductance and resistance of the augmenting rails and 
cross-over connections. For our purposes, variations in the pulse power 
system are not important as long as the rail current can be adequately char- 
acterized. However, the rail-gun inductance gradient must be known accu- 
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rately, including the mutual inductance between the primary and second- 
ary rails. The determination of the "effective" inductance gradient for use 
in equation (1) is an area of current research. 

3. Electromagnetic Field Measurements 
The H-field time derivative (H) is measured with a 13.3-cm-diameter, 36- 
turn coil, which responds to the field component normal to the coil. These 
sensors have a bandwidth of 30 Hz to 100 kHz, with a low-pass filter to ex- 
clude the sensor resonance. As shown elsewhere [5], the sensor voltage is a 
good measure of H in this frequency range, so the H-field can be obtained 
by numerical integration. H-field measurements at radial distances from 
5 cm to 1 m were conducted at several locations along the length of the 
barrel. We obtained E-field measurements using Stanford Research Insti- 
tute E-field sensors, which are a top-loaded monopole antenna design. The 
sensor is calibrated to include the effect of being mounted on a metal can- 
ister. The sensor bandwidth is 2 kHz to 200 MHz, so the acquired data are 
corrected according to the known sensor response as a function of fre- 
quency. E-field data were limited because of instrumentation failures and 
were obtained only near the breech and muzzle. 

The measurement instrumentation includes digital storage oscilloscopes 
and the various data acquisition components. The H data are acquired 
through shielded coaxial cable. E-field data are acquired through a fiber- 
optic data link, which provides attenuation or amplification and has a 
bandwidth of 45 Hz to 200 MHz. Noise measurements verified an 
adequate signal-to-noise ratio for the various measurement systems. The 
acquired data are corrected for linear scale factors and stored in digitized 
form. H measurements are numerically integrated in the time domain. E- 
field measurements require frequency-domain correction for the probe re- 
sponse, which is done numerically in the Fourier transform space with the 
transient data obtained by Fourier inversion. 

4. Comparison Between Theory and Experiment 
The starting point for predicting the time-dependent H-field is the deter- 
mination of the position of the armature, zA(t), as computed from equation 
(1). As shown elsewhere [3], the effective inductance gradient, L'e, is given 
by 

where L'r is the inductance gradient of the rails and EQ is a theoretically 
derived EM efficiency factor that accounts for the leakage of the H-field 
over the area external to the armature. To a first approximation, the induc- 
tance gradient is simply the rail-gun inductance per unit length. From the 
parallel-plate transmission-line model of Baum et al [7], the predicted rail 
inductance gradient of L'r = 0.52 uH/m compared very well with the 



measured value of 0.522 uH/m. Application of the simplified theory of a 
microstrip transmission line developed elsewhere [8] to the rail-gun con- 
figuration provides a value of E0 = 0.75 [2,3]- This produces an effective in- 
ductance gradient of 0.39 uH/m. 

Using the current of equation (2), the value L'e = 0.39 uH/m, and 11 g for 
the armature mass provides both the velocity and position of the armature 
as a function of time. The first integral of equation (1) gives the velocity, 
v(t), and the second integral, zA(t). Figure 3 shows a comparison between 
the measured velocity (averaged over eight shots) and predicted results. 
The anomalies near muzzle exit are repeatable and may be attributable to 
contact arcing. Figure 4 shows a comparison between the measured and 
calculated armature positions as a function of time. The armature starts at 
2.5 cm, which is not included in the model, but otherwise the agreement is 
quite good. 

Because of the low frequencies (long wavelengths), the Biot-Savart law is 
sufficient for computing the time-dependent H-field. If the distance of the 
observation point from the bore center is comparable to the dimensions 
and separation of the rails, the spatial distribution of the current along the 

Figure 3. Measured 
armature velocity 
(dashed line) versus 
theory (solid line) for    g* 
E0 = 0.75. "T 
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Figure 4. Measured 
armature position 
(dashed line) versus 
theory (solid line) for 
E0 = 0.75. 
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rails and armature must be taken into account [2]. When the observation 
points are much greater than the rail height and rail width, the detailed 
spatial distribution of current is not important, and the current along the 
rails can be treated as filaments. This latter condition is applicable to our 
experiments, since the closest measurement locations are 5 cm from center 
bore. 

Figure 5 shows a comparison between the experimental and theoretical be- 
havior of the vertical component of the H-field in the plane of symmetry 
(i.e., between the rails) at 5 cm above the rails and 71 cm from the breech. 
Note that the field peaks when the armature passes the probe location and 
decays abruptly after muzzle exit, so that the initial time delay and the 
waveform pulse width depend on the observation point. The agreement 
for this case is good; however, we noticed that as the distance of the obser- 
vation point from the bore center increased, the discrepancy between the 
amplitude of the theoretical and experimental curves increased, with the 
experimental values being larger. The temporal shape of the experimental 
curves, however, remained consistent with the results shown in figure 5. 
Closer examination of the H-field components indicates that the vector na- 
ture of the field changes as the distance from the bore center increases. This 
behavior may be attributable to metal structures surrounding the rail gun 
and would not be predicted in the free-space model of the rails. 

These preliminary findings may indicate the existence of a parasitic or 
anomalous current flowing somewhere in the laboratory that was driven 
by the power supply. Such anomalous currents would not produce H- 
fields near the rails that were significant to those produced by the rail cur- 
rent. They could, however, produce H-fields comparable to those pro- 
duced by the rails at greater distances (consistent with our observation 
points). 

An example of the B-field (B = H0H) in the plane of symmetry of a 1.2-m, 
two-turn, series-augmented gun is presented for comparison. The vertical 
component is shown in figure 6 at roughly 20 cm above and 61 cm from 
the breech. The peak rail current is about 350 kA, with temporal behavior 

Figure 5. Comparison 
between experimental 
(solid line) and 
theoretical (dashed 
line) behavior of 
vertical H-field in 
symmetry plane at 5 
cm above and 71 cm 
from breech. 03 
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similar to that given by equation (2). The peak B-field (678 gauss or 678 x 
10"4 tesla) associated with the two-turn rail gun is on the same order as for 
the single-turn gun (for equivalent rail current). However, the waveform is 
different where the second peak is related to the muzzle cross-over con- 
nection. Contributions from the current in the rails and buswork can be 
readily seen in the transient waveform depending on the observation 
point. Preliminary modeling has shown that to obtain reasonable agree- 
ment for the transient fields, we need filament models for the cross-over 
connections that carry current at the appropriate times. 

In addition to H-field measurements, we obtained a limited number of E- 
field measurements near the single-turn rail gun. The most interesting of 
these appeared near the muzzle, where the effects of arcing produced 
high-frequency components. Figure 7 shows a representative measured 
field near the muzzle. The horizontal component (i.e., across the rails) is 
measured at two heights above the muzzle. The initial spike is associated 
with switching transients, while muzzle exit occurs at about 2.5 ms with 
additional arcing afterwards. As can be seen in figure 7, the initial spike 
and the transmission-line fringing fields do not fall with distance as fast as 
the arcing contributions, as in the near-field of a dipole radiator. The 
effects of this type of field on nearby electronic equipment remain to be 
explored. 

Figure 6. Vertical B- 
field in symmetry 
plane at 20 cm above 
and 61 cm from 
breech. 

Figure 7. Measured 
E -field at 20 cm 
(solid line) and 41 cm 
(dashed line) above 
muzzle. 
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5. Conclusion 
Predictions of the muzzle exit velocity for the two-rail gun, based on our 
theoretical model for the rail-gun inductance gradient, are within 5 percent 
of the experimental data. This verifies that the "effective" inductance gra- 
dient is the important theoretical quantity and validated our approach to 
determining the efficiency factor. Extending our approach to more compli- 
cated rail-gun designs is currently under investigation. 

Comparisons between calculated and measured magnetic fields show 
good agreement close to the rails. Discrepancies appear for observation 
points more than about 0.3 m from the bore, and we are in the process of 
resolving this issue. It is believed that the vector nature of the field is al- 
tered owing to the presence of nearby metal structures, which is not ac- 
counted for in the free-space model of the rail gun. For all observation 
points, specific features of the transient waveform can be readily identified 
and related to the armature dynamics. This is also true for augmented rail 
guns, but the filament current model becomes more complicated. In this 
case the primary rails, secondary rails, and cross-over connections must 
carry current at the appropriate time according to the armature dynamics. 

The large magnetic fields produced by these HPEM devices require that 
we consider electromagnetic interference/compatibility (EMI/EMC) 
issues to ensure compatibility with other electronic equipment. Mitigation 
techniques such as shielding or separation would typically be required. 
Shielding issues must necessarily be considered an integral part of the rail- 
gun design, because they have a direct impact on the "effective" induc- 
tance gradient of the rail gun. This in turn influences the size of the system 
and the terminal projectile velocity. The rail-gun barrel provides physical 
containment and support for the rails and is typically designed to prevent 
induced eddy currents. The laminated steel barrels considered here pro- 
vide little shielding and so are not included in the theoretical models. The 
presence of materials designed to provide magnetic shielding must be in- 
cluded in the calculation of the transmission-line inductance per unit 
length. Shielding solutions would also affect the efficiency of the force cou- 
pling to the armature and are an area of current research. 
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